Implement Trie Prefix Tree
Question
A trie (pronounced as "try") or prefix tree is a tree data structure used to efficiently store and retrieve keys in a dataset of strings. There are various applications of this data structure, such as autocomplete and spellchecker.
Implement the Trie class:
Trie()
Initializes the trie object.void insert(String word)
Inserts the stringword
into the trie.boolean search(String word)
Returnstrue
if the stringword
is in the trie (i.e., was inserted before), andfalse
otherwise.boolean startsWith(String prefix)
Returnstrue
if there is a previously inserted stringword
that has the prefixprefix
, andfalse
otherwise.
Example:
Input
["Trie", "insert", "search", "search", "startsWith", "insert", "search"]
[[], ["apple"], ["apple"], ["app"], ["app"], ["app"], ["app"]]
Output
[null, null, true, false, true, null, true]
Explanation
Trie trie = new Trie();
trie.insert("apple");
trie.search("apple"); // return True
trie.search("app"); // return False
trie.startsWith("app"); // return True
trie.insert("app");
trie.search("app"); // return True
Solution
from typing import *
class TrieNode:
val: int
neighbours: Dict[str, 'TrieNode']
isWord: bool
def __init__(self, val: str):
self.val = val
self.neighbours = {} # { a: TrieNode(a) }
self.isWord = False
class Trie:
def __init__(self):
self.root = TrieNode("*")
def insert(self, word: str) -> None:
currNode = self.root
for letter in word:
if letter not in currNode.neighbours:
currNode.neighbours[letter] = TrieNode(letter)
currNode = currNode.neighbours[letter]
currNode.isWord = True
def search(self, word: str) -> bool:
currNode = self.root
for letter in word:
if letter not in currNode.neighbours:
return False
currNode = currNode.neighbours[letter]
return currNode.isWord
def startsWith(self, prefix: str) -> bool:
currNode = self.root
for letter in prefix:
if letter not in currNode.neighbours:
return False
currNode = currNode.neighbours[letter]
return True
Time complexity: $O(L)$ — $L$ is the length of the longest word
Space complexity: $O(L)$ — $L$ is the lenght of the longest word, $L$ is the length of the tree
Recursively Search
def search(self, word: str) -> bool:
return self.recursiveSearch(word, 0, self.root)
def recursiveSearch(self, word: str, index: int, node: TrieNode) -> bool:
if index >= len(word): return False
letter = word[index]
if letter not in node.neighbours: return False
letterNode = node.neighbours[letter]
if index == len(word) - 1 and letterNode.isWord:
return True
return self.recursiveSearch(word, index + 1, letterNode)
Recursively startWith
def startsWith(self, prefix: str) -> bool:
return self.recursiveStartWith(prefix, 0, self.root)
def recursiveStartWith(self, prefix, index, node) -> bool:
if index >= len(prefix): return False
letter = prefix[index]
if letter not in node.neighbours: return False
if index == len(prefix) - 1:
return True
letterNode = node.neighbours[letter]
return self.recursiveStartWith(prefix, index + 1, letterNode)