Subtree Of Another Tree

Question

Given the roots of two binary treesĀ rootĀ andĀ subRoot, returnĀ trueĀ if there is a subtree ofĀ rootĀ with the same structure and node values of subRootĀ andĀ falseĀ otherwise.

A subtree of a binary treeĀ treeĀ is a tree that consists of a node inĀ treeĀ and all of this node's descendants. The treeĀ treeĀ could also be considered as a subtree of itself.

Example 1:

Pasted image 20230714152645.png

Input: root = [3,4,5,1,2], subRoot = [4,1,2]
Output: true

Example 2:

Pasted image 20230714152745.png

Input: root = [3,4,5,1,2,null,null,null,null,0], subRoot = [4,1,2]
Output: false

Solution

For this, we need 2 recursions call because for each node at the tree, we need to go through another check of Same Tree.

Implentation

class App:
    def isSubtree(self, root: Optional[TreeNode], subRoot: Optional[TreeNode]) -> bool:
        if not root and not subRoot: return True
        if not root or not subRoot: return False

        if self.isSameTree(root, subRoot): 
            return True
        
        return self.isSubtree(root.left, subRoot) or self.isSubtree(root.right, subRoot)
    

    def isSameTree(self, root: Optional[TreeNode], subRoot: Optional[TreeNode]) -> bool:
        if not root and not subRoot: return True
        if not root or not subRoot: return False

        if root.val != subRoot.val: 
            return False

        return self.isSameTree(root.left, subRoot.left) and self.isSameTree(root.right, subRoot.right)

Time complexity: $O(nk)$

  • $n$: number of nodes in the root tree
  • $k$ number of nodes in the subRoot tree

Space complexity: $O(logn \times logk)$ ā€” Recursion heap

  • $logn$ ā€” height of the root tree
  • $logk$ ā€” height of the subRoot